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Martin, Jeff (Aerospace Engineering)

Numerical Analysis of Synthetic Jet Flow Control on a Vertical Tail

Thesis directed by Prof. Kenneth Jansen

Airflow over a stabilizer-rudder assembly is simulated on an unstructured grid using a stream-

line upwind Petrov-Galerkin (SUPG) weighted residual finite element formulation of the incom-

pressible Navier-Stokes equations. These studies seek to determine the effectiveness of synthetic

jet flow control in increasing side force over the vertical tail. The two models under investigation

are the Beta model, with 12 jets aligned along the span of the stabilizer, and a Beta model scaled

up by a factor of 1.969, with 24 jets aligned along the span of the stabilizer. These two models

have Reynolds numbers of 3.6×105 and 7.1×105, respectively, where both are based on the mean

aerodynamic chord. The flow solver, Phasta, is used to run these simulations. URANS simulations

on the Beta model with a 5◦ sideslip angle and 20◦ rudder deflection angle show that unsteady

blowing with a blowing ratio of 1.0 increases the total side force coefficient by 14% with respect to

the baseline. The Cp data obtained as a function of percent chord showed improvement in Cp from

unsteady blowing in the outboard region, but negligible change in the inboard region. This data

is in agreement with experimental values. Speed isosurface data was obtained for the Beta model

with a 0◦ sideslip angle and 30◦ rudder deflection angle, with steady blowing. It was found that

these isosurfaces create ridges and valleys along the span, suggesting interference between the jets.

The same result was found for the scaled-up Beta model with a 0◦ sideslip angle and 30◦ rudder

deflection angle, with steady blowing.
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Chapter 1

Introduction

Aerodynamic control surfaces have an operating regime that is strongly influenced by the

degree to which the airflow stays attached to the surface. When flow separation becomes massive,

it limits all aerodynamic control surfaces, including the rudder, to a certain range of deflection

angles. The purpose of the rudder is to change the effective shape of the vertical tail, which

increases the side force. At large rudder deflection angles, the boundary layer separates from the

surface, and there is a drastic loss of streamwise momentum. When this occurs, the side force

is reduced, which makes aircraft yaw motions more difficult to achieve and may lead to a loss of

stability. However, flow control offers an opportunity to counter these adverse effects, allowing

enhanced performance at higher rudder deflection angles.

Synthetic jets are a form of active flow control, where the jets have zero net mass flux and

rely on the free-stream velocity, or cross flow, for the supply of fluid. This unique feature allows

them to transfer linear momentum to the flow system without any net mass injection (see Glezer

and Amitay [3]). They are formed by imposing a time-alternating velocity field, which is achieved

by the motion of a piezoelectrically driven diaphragm [3]. The vibration of the diaphragm results

in a series of suction-blowing phases, where upstream and spanwise fluid is pulled into the jet

and then ejected downstream. The interaction between the jets and the cross flow over the airfoil

surface create the Coandă effect, where the added momentum will displace the local streamlines and

thereby keep the flow attached longer. This approach requires the operating frequency to be much

larger than the characteristic flow frequency (e.g. shedding frequency of the airfoil). This way, the
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interaction domain between the jets and the cross flow is independent of the global timescale of the

flow, and aerodynamic forces are invariant with the actuation frequency [3]. A reduced frequency

(F+) > 10 times that of the characteristic flow frequency has been shown to be effective in this

regard [1].

The following chapters will present the methodology used to obtain the numerical results,

followed by a discussion of the results. A short mathematical description of the flow solver will be

given, as well as a discussion of the mesh and boundary conditions used. A presentation of the

results obtained will follow. The final chapter will give concluding remarks and describe future

work to be performed on this project.
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Chapter 2

Flow Solver Formulation

The governing equations of motion in this problem are the Navier-Stokes equations, a system

of nonlinear partial differential equations which express momentum conservation. Due to their

inherent nonlinearity, there is no closed-form solution to these equations, making numerical methods

the only practical way to to solve them for a desired domain and set of boundary conditions. The

equations can however be simplified by treating the fluid as incompressible. This assumption is

valid if the Mach number is less than ∼ 0.3, which is the case for the problem of interest. The strong

form of the incompressible Navier-Stokes equations will be discussed, followed by a description of

the finite element method used to discretize the weak form.

2.1 Strong form

The strong form of the incompressible continuity and momentum equations (see Gresho [4])

can be written as

ui,i = 0 (2.1)

ui,t + ujui,j = −p,i + τij,j + fi (2.2)

where the pressure and body force terms are implicitly divided by the density ρ. τij is the deviatoric

stress tensor given by

τij = ν(ui,j + uj,i) (2.3)

where ν is the kinematic viscosity µ/ρ.
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2.2 Weak form - finite element discretization

The finite element weak form of the Navier-Stokes equations (2.2) makes use of discrete

weight and solution function spaces, defined on some spatial domain Ω ∪ Γ, in N dimensions. The

boundary is broken into portions with natural boundary conditions, Γh, and essential boundary

conditions, Γg, where Γ = Γg ∪Γh. The domain, Ω, is decomposed into nel finite elements, Ω̄e. The

H1(Ω) weight functions q and wi are introduced, where H1(Ω) represents the usual Sobolev space

of functions with square-integrable values and derivatives on Ω (see Hughes [5]). Upon integrating

by parts and multiplying by the weight functions, the strong form of equations (2.2) is transformed

into the semi-discrete Galerkin formulation given by:

BG(wi,q;ui,p) =

∫
Ω
{wi(ui,t + ujui,j − fi) + wi,j(−pδij + τij)− q,iui} dΩ

+

∫
Γh

{wi(pδin − τin) + qun} dΓh

(2.4)

Solutions for u and p are found when: BG(wi,q;ui,p) = 0

However, the Galerkin method is unstable for equal-order interpolations, so additional stabilization

terms are added. This yields:

B(wi,q;ui,p) =BG(wi,q;ui,p) +

nel∑
e=1

∫
Ω̄e

{τM (ujwi,j − q,i)Li + τCwi,iuj,j} dΩ̄e

+

nel∑
e=1

∫
Ω̄e

{wi
∆
ujui,j + τ̄

∆
ujwi,j

∆
ukui,k} dΩ̄e

(2.5)

where Li represents the ith momentum equation

Li = ui,t + ujui,j + p,i − τij,j − fi (2.6)

The first integral of equation (2.5) is the streamline upwind/Petrov-Galerkin (SUPG) stabilization,

commonly used for the incompressible formulation (see Franca and Frey [2]). The first part of the

second integral was introduced by Taylor et al. [9] to account for the loss of momentum conservation

introduced as a consequence of the momentum residual appearance in the continuity equation. The
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second part of this integral is included to stabilize this new advective term. A solution is obtained

when u and p have been found, such that:

B(wi,q;ui,p) = 0 (2.7)

The infinite dimensional spaces are replaced by finite element spaces by writing equation (2.5) as

products of weights and residuals as:

3∑
i=1

nn∑
A=1

wi
A

m

Ri
A +

nn∑
A=1

qA
c

RA = 0 (2.8)

which is equivalent to
m

Ri
A = 0 ∀ i, A (2.9)

c

RA = 0 ∀ A (2.10)

where
m
R and

c
R represent the portions of the residual from the momentum and continuity equations,

respectively. Both are comprised of the solution variables, interpolated by three-dimensional shape

functions over each element. The present problem uses only first-order polynomials [10]; they are

integrated over each element using Gaussian quadrature. The resulting system of ODEs from (2.9)

and (2.10) is transformed into a non-linear system of algebraic equations, and then linearized using

Newton’s method to obtain

 K G

−GT C


∆u,t

n+1

∆p,t
n+1

 = −


m
R

c
R

 (2.11)

where

K ≈ ∂
m
R

∂u
, G ≈ ∂

m
R

∂p
, C ≈ ∂

c
R

∂p
(2.12)

K, G, and C are approximations to the full tangent matrices. The integration in time is accom-

plished with a second-order implicit predictor-corrector algorithm called the generalized-α method

(see Jansen et al. [6]). Equations (2.11) are solved on each corrector pass at each time step with

the GMRES linear algebra solver of Shakib [7].
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Chapter 3

Simulation Setup

The two models under investigation are low Reynolds number representations of a full-scale

flight setup. The advantage to using these smaller models is a lower overhead in terms of compu-

tational resources and experimental facilities. They allow the user to test different geometry and

jet configurations much more quickly and with less expense than there would otherwise be by run-

ning with a full-scale model. Furthermore, the results obtained from these preliminary simulations

provide useful insight into ways the geometric setup can be optimized for future simulations.

The geometric models were constructed to both approximate the experimental setup, and

minimize the error incurred from the flow solver. The conflict encountered between these two

objectives was minimal, and small enough not to compromise the integrity of the simulations.

3.1 Model Scaling Parameters

The Beta model contains 4 jet modules, each containing 3 jets for a total of 12. The model

contains a stabilizer-rudder assembly mounted on a platform called the ”fence”, which is all enclosed

within wind tunnel walls. The airfoil section is classified as a NACA 0012 with a taper ratio of 0.36

and quarter-chord sweep angle of 41.6◦. The stabilizer-rudder gap is untaped, meaning flow can

leak into and around the gap. The second model under investigation is a scaled-up Beta model;

its stabilizer-rudder assembly is the same as that of the Beta model, but it has been scaled up by

a factor of 1.969. The model contains 6 jet modules, each containing 4 jets for a total of 24. The

jets, however, have not been scaled up; they are the same size as those of the Beta model. Other
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geometric changes include a larger fence platform, and a smaller gap between the bottom of the

rudder and the fence. Table 3.1 summarizes the main features of both models:

Parameter Beta Beta-scaled

croot, m 0.370 0.728

ctip, m 0.133 0.262

Taper ratio (λ) 0.36 0.36

MAC (c̄), m 0.271 0.534

Span (b), m 0.533 1.05

Sref , m2 0.134 0.52

Aspect ratio (AR) 2.13 2.13

Λc/4, deg 41.6 41.6

ΛLE , deg 45 45

δejet, mm 26.7 26.7

δemodule, mm 44.5 47.0

Table 3.1: Model scaling parameters

Figure 3.1: Beta and Beta-scaled
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Figure 3.2: Spanwise jet spacing

The jets are grouped into modules, and all modules lie just upstream the trailing edge of the

stabilizer. Two different jet configurations were tested. The full jets have a circular resonating

chamber. The chamber connects to a rectangular orifice (the throat), which directs the jet flow to

the free stream. The orifice has a height of 1 mm and a span of 19.1 mm. The orifice is curved, as

to allow the bottom to join smoothly with the stabilizer surface. This also has the effect of forcing

the jet flow to exit parallel to the free stream, adding momentum to the low-momentum region

near the rudder wall. An alternative jet configuration was also tested, where the full jets were cut

at a specified distance along the orifice, creating a rectangular blowing face with a height of 1 mm

and a span of 19.1 mm.

The Beta model is placed in a wind tunnel test section with inlet and outlet dimensions of 0.8 x 0.8

m and a tunnel length of 5 m. The test section used for the Beta-scaled model has inlet and outlet

dimensions of 1.83 x 2.44 m (width x height) and a tunnel length of 7.49 m. Lastly, two different

combinations of sideslip (β) and rudder deflection (δ) angles were investigated: β = 5◦, δ = 20◦,

and β = 0◦, δ = 30◦. Sideslip angle is measured with respect to the free stream direction (red

arrow in figure 3.3, and rudder deflection angle is the angle between the chord line of the stabilizer

(blue) and the chord line of the rudder (green). The two lines meet at the hinge.
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Figure 3.3: β and δ

3.2 Boundary Conditions

The CAD models are converted into manifold parasolid models. The computational domain

includes the faces of the wind tunnel walls and stabilizer-rudder assembly, and the empty space in

between, which is treated as a fluid. The natural and essential boundary conditions are prescribed

on model faces, whereas the initial conditions are prescribed on the whole computational domain.

Table 3.2 lists the boundary conditions on different surfaces.

Surface BC’s

Inflow u = (20, 0, 0) m/s

Outflow pressure = 0 Pa

Slip tunnel walls normal velocity = 0 m/s

No-slip surfaces u = (0, 0, 0) m/s

Diaphragm-full jet Parabolic velocity profile

Diaphragm-cut jet Trapezoidal velocity profile

Table 3.2: Boundary conditions

The inlet velocity was set at 20 m/s. This corresponds to Reynolds numbers of 3.6×105 and 7.1×105

for the Beta and Beta-scaled models, respectively, where both are based on the mean aerodynamic

chord. The pressure at the outflow is set to 0 Pa, which is a reference pressure since the flow is

treated as incompressible. No-slip conditions are applied on all surfaces, except the tunnel walls

which are modeled as slip surfaces. The initial conditions specify a velocity of (1×10−8, 0, 0) m/s

and a pressure of 0 Pa. The velocity profile on the blowing face of each jet is set to match the
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experimentally observed diaphragm deflection shape, and the intended blowing ratio, Cb, where

Cb =
Uj

U∞
(3.1)

Uj =
1

T

∫ T/2

0
uj dt (3.2)

and uj is the jet velocity at the center of the jet exit without cross-flow (i.e. U∞ = 0). In this

context, Uj is the time-averaged jet velocity at the center of the jet exit during the outstroke phase.

The integration is over only a half a cycle because a full period includes both the instroke and

outstroke phases, which cancel each other. For unsteady blowing, these conditions are met by

imposing a time-varying maximum velocity on the blowing face, umax, given by

umax = Vmax sin 2πf(t+ ∆t) (3.3)

where Vmax is the velocity amplitude, f is the jet frequency, and ∆t is the time step size. For steady

blowing, there is no jet frequency, so umax is simply taken as a constant.

3.3 Mesh Characteristics

Discretization of the computational domain is achieved by creating a mesh of finite elements,

where each has a characteristic set of nodes which contain a solution field. Building a correct

mesh is of critical importance, although it is not necessarily straightforward due to the compromise

between accuracy and computational resources. Using a finer mesh will reduce the discretization

error, but will be more computationally demanding. As such, a coarser mesh was used in the far-

field regions, and a finer mesh in the physically critical regions of the domain. The critical regions

include regions near highly curved model surfaces, such as the stabilizer and rudder surfaces, and

the synthetic jet paths. Two main element shapes are used in the mesh: tetrahedra and wedges,

where a wedge can be divided into 3 tetrahedra. The initial mesh is mainly composed of wedges,

but is converted to an all-tetrahedron mesh before doing computation with Phasta. The advantage

of using an all-tetrahedron mesh over a mixed-topology mesh is that it improves the load balance
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between processors. Figure 3.4 shows the Beta model surrounded by the wind tunnel walls, which

defines the whole computational domain. Figure 3.5(a) shows the mesh surrounding the stabilizer

nose. This region is highly refined due to the stagnation point, and high velocity gradients in this

region. The no-slip condition induces high velocity gradients near the walls, and the boundary

layer elements are used to capture these steep gradients. These elements are stacked up from the

wall in layers of increasing thickness, as shown in figure 3.5(b).

Figure 3.4: Computational domain
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(a) Nose

(b) Boundary layer elements

Figure 3.5: Stabilizer mesh

Particular regions of the domain, which are not necessarily associated with a particular face, can be

refined by creating refinement boxes. These are defined by an origin and 3 vectors, but the vectors

need not be orthogonal. This allows more flexibility in terms of isolating very specific regions that
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need more refinement than their surroundings. Figure 3.6 shows a global view of the refinement

regions, where a slice, parallel to the free-stream, has been taken through the mesh. There is a high

level of refinement near the model, and it gradually coarsens downstream. Downstream refinement

is required due to the vortices shed into the rudder wake. Moreover, the region immediately down-

stream the rudder is given an especially high level of refinement in order to resolve the separated

flow regime. This is apparent from figure 3.7.

Figure 3.6: Refinement regions
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Figure 3.7: Rudder and wake refinement

The mesh surrounding a full jet from the Beta model is shown in figure 3.8(a). The jet exit fillet,

shown in figure 3.8(b), is an important feature of the jets, and requires a thin boundary layer and

fine mesh.
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(a) Outer

(b) Inner

Figure 3.8: Jet mesh - exterior

The jet throat mesh is fairly coarse near the inlet but becomes finer inside the throat. The high

level of refinement in the throat is needed to resolve the recirculation regions that develop due to

the curved surfaces. There are also small, unsteady structures that develop in the throat, which

also require a very fine mesh.
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Chapter 4

Simulation Results

This section covers the URANS (unsteady Reynolds-averaged Navier-Stokes) simulation re-

sults obtained for different model parameters. The turbulence model used was the Spalart-Allmaras

model [8]. This is a one-equation model for the eddy viscosity. The results from both β-δ com-

binations will be addressed, where the two different jet configurations were tested with the Beta

model, and only the cut jets were tested with the Beta-scaled model. The effectiveness of the jets

is considered from multiple viewpoints; changes in pressure coefficient, speed isosurface, and side

force coefficient data with respect to the baseline will be discussed. Comparisons will be made

between numerical data obtained at CU Boulder and experimental data at Rensselaer Polytechnic

Institute.

4.1 Beta Model - β=5◦, δ=20◦

The actuation frequency used in these simulations was 1600 Hz. The baseline simulation was

compared with a simulation where all 12 full jets were activated in locked phase, at 180 time steps

per cycle. This corresponds to a time step size of 3.472×10−6 seconds, or, 2◦ per time step. A

value of Vmax was chosen such that the parabolic velocity profile produced a value of Cb = 1.0. The

CFD Cy for the forced case was found to be 14% higher than that for the baseline, where Cy is

the side force normalized by (dynamic pressure × Sref ). The baseline CFD value of Cy is slightly

higher than that reported by experiment, however, the forced CFD Cy differed by less than 1%

with respect to the experimental value. The baseline Cy discrepancy is likely due to the limitations
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of the URANS model in predicting massively separated flows. Table 4.1 shows the breakdown of

Cy from different surfaces; as expected, the stabilizer and rudder contribute all of the side force.

Surface Cy % of total Cy

Stabilizer + rudder 0.9422 100

Stabilizer 0.7541 80.04

Rudder 0.1881 19.96

Jet paths + diaphragm 0 0

Table 4.1: Cy breakdown

The instantaneous Cy contribution from each surface is shown in figure 4.1. These plots are con-

sistent with figure 4.1.

Figure 4.1: Cy - instantaneous

Figure 4.3 shows the time-averaged outboard and inboard pressure coefficient data plotted alongside

the experimental values. The Cp data was taken at the same locations as the pressure ports on

the physical model. The planes containing these ports are shown in figure 4.2. The URANS CFD

data is in good agreement with the experimental data. The results for the inboard plane are also

in good agreement, but it is clear that the flow control has less effect in this region.
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Figure 4.2: Pressure port planes

(a) Outboard

(b) Inboard

Figure 4.3: Cp - time average
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Simulations were run to test the effect of a 180◦ phase offset between even and odd jets on time-

averaged Cy and Cp. That is, the even jets are in the suction phase when the odd jets are blowing,

and vice versa. It was found that there is virtually no difference between the two cases; the

difference in time-averaged Cy is less than 1%. However, figure 4.4 shows there is a major difference

in amplitude of the unsteady Cy.

Figure 4.4: Cy - instantaneous

Figure 4.5 shows time-averaged Cp over the suction side of the vertical tail, for the baseline, jets

in-phase, and jets out-of-phase cases.

(a) Baseline (b) Forced-0◦ offset (c) Forced-180◦ offset

Figure 4.5: Cp - time average
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Figures 4.5(b) and 4.5(c) are nearly identical, which is in agreement with 4.4. Figure 4.6 shows the

time-averaged Cp on a cross-section through the outboard plane. This complements figure 4.3(a)

in showing the change in Cp between the baseline and forced cases.

(a) Baseline (b) Forced - 0◦ offset

Figure 4.6: Cp - outboard plane

The difference in Cy amplitude for these two cases can be explained by comparing them at different

phases of the jet cycle. Figure 4.7 shows Cp on the suction side for 4 phases of a simulation where

the jets are synchronized. It is clear that the pressure shifts dramatically between the onset of

blowing and the onset of suction. Figure 4.8 shows a different evolution of surface pressure when

the jets are off-phase. These results are consistent with those shown in figure 4.4.
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(a) 0◦ (b) 90◦

(c) 180◦ (d) 270◦

Figure 4.7: Cp - 0◦ offset
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(a) 0◦ (b) 90◦

(c) 180◦ (d) 270◦

Figure 4.8: Cp - 180◦ offset

The effect of time step size on the solution was also investigated. When the same simulations

were run with different time steps, the results show small differences up to a step size of 12 time

steps per jet cycle. Step sizes of 180, 90, 45, 20, and 12 time steps per cycle were tested. The

difference in time-averaged Cy with respect to 180 is very small (< 1%) for all except 12, which

is slightly higher. An examination of the instantaneous side force also reveals the gradual loss

of accuracy with increasing time step. Figure 4.9(b) shows a marked increase in amplitude with

increasing time step size, although it is not clear from this picture why the mean Cy for a step size

of 12 time steps per jet cycle is different than the rest.
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(a) Cy - instantaneous

(b) Cy - instantaneous (3 periods)

Figure 4.9: Cy - instantaneous

The discrepancy is explained by figure 4.10, which shows the evolution of the mean Cy, where the

mean was taken over 3 jet cycles. Increasing the time step beyond T/20 introduces a slow drift to

the mean.
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Figure 4.10: Evolution of mean Cy

Lastly, figure 4.11 shows that the outboard and inboard Cp is also predicted well by Phasta

at larger time steps.
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(a) Outboard

(b) Inboard

Figure 4.11: Cp - time average

4.2 Beta Model - β=0◦, δ=30◦

This section will address the results obtained for the Beta model at a sideslip angle of 0◦ and

a rudder deflection angle of 30◦. Steady blowing at 3 levels was used: Vmax/π (Cb = 1), Vmax/2, and

2× Vmax/π. Vmax for the cut jets was determined by equating the mass flux through its rectangular

blowing face with the mass flux through the circular diaphragm of the full jet.

Figure 4.12 compares the time-varying Cy for the full and cut jet models with different combinations
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of blowing: 0-1 means the odd jets are off while the evens are blowing, 1-1 means all jets are blowing,

and 1-M1 means odd jets are blowing while the evens are in suction (jets are numbered from tip

to root). The same RANS model was used, with a time step size of 0.00125 seconds. It should be

noted that the baseline transient in the first 270 time steps was left out. The curves for both jets

follow fairly closely for Vmax/2 and 2× Vmax/π, however, they are clearly very different for Vmax/π.

There is also not a large difference in side force coefficient between the baseline and Vmax/π cases,

which might suggest that steady blowing at this level is not enough to re-attach the flow. The mesh

size in the refinement regions behind the rudder and downstream wake, in these cases, is rather

conservative. It is most likely unable to resolve the separated shear layer for Vmax/π.

Figure 4.12: Cy

The baseline Cy for both cases is steady on a large time scale, where each is offset from the other by

a small amount. But it is interesting to look at each one on a smaller scale, as shown in figure 4.13.

It then becomes obvious that when the jets are off, they resonate due to the cross flow, and with

different frequencies. This is expected however, because the cut jets have a shorter throat than the

full jets, and therefore, should resonate with a higher frequency.
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Figure 4.13: Cy - baseline

The effect of the jets can also be illustrated with velocity vectors. Figure 4.14 shows a slice through

the middle of the 5th jet from the tip, for the baseline case. The time-averaged in-plane velocity

vectors are shown, and the background is colored by the time-averaged out-of-plane speed. This

massively separated flow is characterized by a backflow near the rudder surface, which is a part of

a large wake behind the rudder. The same slice is shown in figure 4.15, but with all jets blowing

at 2×Vmax/π. The added momentum essentially eliminates this velocity deficit, and keeps the flow

attached the surface.

Figure 4.14: In and out-of-plane velocity - Baseline
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Figure 4.15: In and out-of-plane velocity - 2×Vmax/π

Figures 4.16 - 4.18 show time-averaged normalized speed isosurfaces for the case where all 12 jets

are blowing. The jets create a series of ridges and valleys of constant speed along the span, which

strongly suggests that the jets are interacting and interfering with each other. These interactions

are not desirable because they compromise the contribution of added momentum to the flow from

each jet. The influence of the cross-flow forces the valleys to turn toward the freestream direction,

where each valley is bounded by a ridge that eminates from the root side of the jets. The differences

between the cut and full jet isosurfaces are fairly small, which is in agreement with figure 4.12.

Comparing figures 4.17 and 4.18, the higher blowing makes the ridges in the middle and at the tip

larger, while the ridges near the root are nearly unaffected. Comparing the baseline isosurfaces with

the forced near the root, the jets are improving the velocity deficit very little, if any. This is because

the flow is largely attached near the root for the baseline case. The reason for this is partly because

the root vortex is helping to attach the flow to the rudder, with or without the jets activated.

This result is consistent with the inboard Cp plot in figure 4.3(b), which also demonstrated little

improvement. This vortex exists because of the gap between the rudder and fence.
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Figure 4.16: Normalized speed - baseline

(a) Cut jets (b) Full jets

Figure 4.17: Normalized speed - Vmax/2
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(a) Cut jets (b) Full jets

Figure 4.18: Normalized speed - 2×Vmax/π

Figures 4.19 - 4.21 show time-averaged Cp for the same cases. The ridges and valleys are depicted

by spanwise alternating patterns of red and green.

Figure 4.19: Cp - baseline



www.manaraa.com

31

(a) Cut jets (b) Full jets

Figure 4.20: Cp - Vmax/2

(a) Cut jets (b) Full jets

Figure 4.21: Cp - 2×Vmax/π

4.3 Beta-scaled Model - β=0◦, δ=30◦

Finally, the URANS results for the Beta-scaled model will be discussed. The jets underwent

steady blowing at two levels used previously: Vmax/2 and 2× Vmax/π, and with a time step size of

0.00125 seconds. The mesh has similar characteristics as that used with the Beta model. Cy data

for two cases is shown in figure 4.22: one where all jets are blowing (1-1) and one where the odd
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jets are off and the evens are blowing (0-1). The 1-1 case produced a lower Cy for Vmax/2, which

is in contrast with the Beta model results. Figure 4.24 shows the time-averaged normalized speed

isosurfaces for this same case. The ridges and valleys seen on the Beta model are also present on

this model. The detachment of the isosurfaces in figure 4.25(a) is less severe than in figure 4.24(a),

although it is not yet clear whether or not the higher blowing improves the jet interaction dynamics.

Figure 4.22: Cy

Figure 4.23: Normalized speed - baseline
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(a) 1-1 (b) 0-1

Figure 4.24: Normalized speed - Vmax/2

(a) 1-1 (b) 0-1

Figure 4.25: Normalized speed - 2×Vmax/π
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Chapter 5

Conclusions and Future Work

Two vertical tail models were considered in this study, the Beta and Beta-scaled models.

Phasta was used to run URANS simulations on the Beta model with a Reynolds number of 3.6×105,

sideslip angle of 5◦, and rudder deflection angle of 20◦. When a Cb of 1.0 and a time step size of

180 time steps per jet cycle were used with the jets in locked phase, an approximate 14% increase

in Cy magnitude was seen with respect to the baseline. The Cp measured in the plane containing

the outboard pressure ports increased in magnitude, however, it did not change appreciably at the

inboard pressure ports. The Cp data was in good agreement with experimental values. Additionally,

it was found that introducing a 180◦ offset between even and odd jets produced the same Cy and

Cp as the 0◦ case. The time step study done on this model showed that Cy stays fairly constant

for step sizes of 180, 90, 45, and 20 time steps per jet cycle, but changes significantly with 12 time

steps per cycle. The inboard and inboard Cp were predicted well by Phasta, even at 12 time steps

per cycle.

URANS data was also gathered from the Beta model for a sideslip angle of 0◦ and rudder

deflection angle of 30◦. These simulations used steady blowing, with a time step size of 0.00125

seconds. It was found that turning all 12 jets on and setting the maximum velocity on the diaphragm

to 2×Vmax/π resulted in the biggest change in Cy with respect to the baseline. Both the full and

cut jets showed a similar time evolution of Cy for blowing levels of Vmax/2 and 2×Vmax/π. The

normalized speed isosurfaces form ridges and valleys along the span, suggesting that the jets are

interfering with each other.
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The Beta-scaled model simulations were run at a Reynolds number of 7.1 ×105, sideslip angle

of 0◦ and rudder deflection angle of 30◦. Steady blowing with the cut jets and a time step size of

0.00125 seconds were used. An interesting result from these runs was that when a blowing level

of Vmax/2 was used, the instantaneous Cy seen when only the even jets were on was higher than

when all the jets were on. Similar to the Beta model speed isosurfaces, these also formed ridges

and valleys along the span.

These simulations will pave the way for future simulations that will shed light on the most

important questions. In particular, the means by which the jets influence each other needs to be

addressed. Analyses of vorticity, in addition to velocity, may be of some use here. It is possible

that different spanwise jet spacing configurations should be tested, because maybe this is the key to

more efficient use of the jets. Changing the jet orientation could also help in this area, for example,

by making them parallel to the freestream. It is also necessary to cover a wide parameter space, in

order to understand better how the synthetic jets behave for different sideslip and rudder deflection

angles. It is equally important to conduct refinement studies to determine an adequate initial mesh.

As the model is scaled up further, fluctuation-based adaption will become increasingly important

due to constraints on the memory available for creating an initial mesh.
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